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We present a theoretical treatment of the Landau two-fluid model of superfluidity 
in liquid helium by means of the Dirac formalism. We introduce hydrodynamic 
considerations in a natural way by means of Lagrange multipliers. All constraints 
in phase space, in Dirac's sense, are second class and, as a consequence, the 
Dirac bracket differs strongly from the Poisson bracket. We calculate the Dirac 
bracket of the canonical variables, putting special interest on the density and 
the momentum density of the system. Our results generalize the results given by 
Dzyaloshinskii and Volovik and correct other published results. 

1. I N T R O D U C T I O N  

This  p a p e r  presen ts  a s tudy  o f  the L a n d a u  two-f lu id  m o d e l  (Pu t t e rman ,  
1974) o f  super f lu id i ty  b a s e d  on the D i rac  fo rma l i sm for  s ingu la r  systems 
(Di rac ,  1950, 1951, 1958, 1964; S u d a r s h a n  and  M u k u n d a ,  1974). 

As is well  known,  the  Lag rang ian  fo rmu la t i on  o f  the  equa t ions  o f  
m o t i o n  o f  the  two-f lu id  m o d e l  is due  to K h a l a t n i k o v  (1952) and  the 
equ iva len t  H a m i l t o n i a n  f o r m u l a t i o n  was es t ab l i shed  by  Pokrovsky  and  
K h a l a t n i k o v  (1976). I t  is i m p o r t a n t  to stress the  fact  that  these  au thors  do  
not  take  into  account  the  s ingular i ty  o f  the  Lag rang ian  densi ty ,  i.e., the  
exis tence  o f  cons t ra in ts  in phase  space.  D u e  to this fact,  we have to fo l low 
Di rac  and  a p p l y  his fo rma l i sm to find the  t ime evo lu t ion  o f  the  phys i ca l  
var iables .  

R o d r l g u e z - G 6 m e z  (1980) s tud ied  super f lu id  he l ium by means  o f  a 
D i r ac  t r ea tmen t  for  s ingu la r  systems,  but  he ob ta ins  resul ts  different  f rom 
the  ones we presen t  here.  Add i t i ona l l y ,  we have  ca lcu la t ed  the D i rac  b racke t  
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of  the relevant physical variables, which was not done in Rodrfguez-Grmez 
(1980). 

In Section 2 we review the main basic concepts and consequences of 
the formalism to be used. Section 3 is dedicated to the Lagrangian density 
proposed by Khalatnikov to study superfluid helium as a two-fluid system. 

We apply the Dirac formalism to our Lagrangian density in Section 4. 
We give the conclusions of this work in Section 5. 

2. A S U R V E Y  O F  D I R A C  M E C H A N I C S  

We write down the main results of  the Dirac formalism which are 
connected with the present work. 

Let q = ( q ~ , . . . ,  qN) and p = ( P a , . . .  ,PN) be the generalized coordin- 
ates and momenta of a system of N particles. A Lagrangian is defined to 
be singular if and only if 

detlO2L/Oqi 0qj[ = 0 (2.1) 

where i, j = 1, 2 , . . . ,  N, and L is the Lagrangian of the system. 
The primary constraints 3 f l  ( q, p) ~ 0( ~ = 1, 2 , . . . ,  M )  are those which 

arise from the definition of  the canonical momentum 

p, =- OL/Oq, (2.2) 

and the secondary constraints f~ (q, p) ~ 0, with y >- 2, are those which result 
from the self-consistent equations 

f~ =Of~/Ot + q, Of~/Oq, + p, of~/Op, ~ 0  (2.3) 

where we have adopted the Einstein convention for repeated indices. The 
equations of motion for q, and p, are given by 

q, = OH/Op, + Us Of~/Ov, (2.4) 

- p ,  = OH/Oq, + U, Of X~/Oq, (2.5) 

The summation in a is for the primary constraints. The Us are noncanonical 
variables and maybe obtained from self-consistency (or noncontradiction) 
equations. 

Along the same lines, a variable g(p, q) is first class if 

{g,f~}_ ~0 ,  Vc~ (2.6) 

If  g does not satisfy equation (2.6), it is a second-class variable. Dirac also 
proves the following theorem. 

3 f~) is given by p~ -oL/Oq~ ~-0. 
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Theorem. A quantity h(q, p) is a physical variable if and only if 

{h, f~}_ --- 0 (2.7) 

f~ refers to all constraints. If  h does not satisfy equation (2.7), we call it a 
nonphysical variable. 

The Dirac formalism leads to the construction of the so-called Dirac 
bracket given by the following expression: 

{g, h}* = {g, h } _ -  {g , f~ I_C~{ f~ ,  h}_ (2.8) 

where we are summing over one irreducible decomposition of second-class 
constraints, C ~r is the inverse matrix of the Poisson brackets {f~,fr and 
{ . , .  }_ stands for the antisymmetric Poisson bracket. 

If  we follow the work of Sundarshan and Mukunda, we can easily 
generalize the present formalism to the case of field theory. 

3. LANDAU TWO-FLUID MODEL 

Landau proposed a macroscopic model for liquid helium consisting 
of  a mixture of  two fluids. According to him, in liquid helium, two move- 
ments can exist simultaneously, each having its own "effective mass." One 
of  these motions corresponds to a normal liquid and the other is associated 
with the superfluidity properties of helium below a critical temperature. 
Both motions take place without a momentum transfer from one liquid to 
the other. In a certain sense, we may talk of "superfluid" and "normal"  
masses of liquid helium. However, we should keep in mind that real division 
of the liquid into two parts is impossible. 

During a rotation of a vessel containing helium, the superfluid part 
remains stationary. This means that 7 • Vs = 0, where Vs is the superfluid 
velocity. The part which is responsible for the viscosity, the normal fluid, 
is characterized by the normal velocity, Vn. 

The Lagrangian density proposed by Khalatnikov is 

= - p V ~ / 2 + J .  V~, - e(p, S, V~ - V~)+ a(p  +V.  J)  

where 

+ ~ [ s + v .  (sv.)] + ~[F+ V. (FV.)] 

J = p ,  V n + p ~ V ~ = p , ( V n - V s ) + p V s  

(3.1) 

and On and ps are the densities of the two parts of the liquid helium; S is 
the entropy density; e is the energy density; and J is the total momentum 
density of  the liquid. 

(3.2) 
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We immediately observe in equation (3.1) that the normal part is 
responsible for the energy transfer. We also conclude that the parameters 
a,/3, and p are Lagrange multipliers. As a direct consequence, the equations 
of motion which result from the variations of a,/3, and 1, are the continuity 
equation, the entropy production. $,/3, F, and 1, are Clesch variables needed 
to describe the momentum of  the liquid (Seliger and Whitham, 1969). 

It is important to point out that the additions of  a total derivative or 
gauge transformation, according to the notation of  Levy-Leblond (1969), 
has no consequences in a quantized theory coming from a singular 
Lagrangian density, as proved by Tello-Llanos (1984) and much more 
recently by Rodrfguez-Ntifiez (1990). The last work refers to the case of 
fermionic variables at the quantum level or Grassman variables (Negele 
and Orland, 1988) at the classical one. 

Due to their association in the Lagrangian density, the canonical 
variables are 

( p , a ) ,  (S,/3), and (F ,v )  (3.3) 

Variations with respect to V~ yield 

J = pVa + SV/3 + FV v = pVs +p (3.4) 

where 

Vs=-Va; pmSV/3+FVv=p, , (V , , -Vs )  (3.5) 

Using the last two equations, we can rewrite the Lagrangian density as 

~s ap + /3S + ~,F- pV~/2-  eN(p, S, p ) - p .  Vs (3.6) 

where 

EN=--e+p'(V~-- V~) (3.7) 

Equation (3.6) was derived using the fact that both the normal and 
superftuid flows have zero velocity perpendicular to the container (Landau 
and Lifshitz, 1987). 

4. A P P L I C A T I O N  OF T H E  D I R A C  F O R M A L I S M  

From equation (3.1), we easily obtain the primary constraints. They are 

f'l : P p -  a---0 (4.1) 

f~ = Ps - /3  ~ 0 (4.2) 

f~ = P~ - p --- 0 (4.3) 

f~ = p~ w_ 0 (4.4) 

f~ = P~ ~ 0  (4.5) 

f~ = P~ ~ 0 (4.6) 
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The total Hamiltonian density ~ r  is given by 

Y(r =PVZ/2 + P �9 V~ + eN(p, S ,p)  + g l ( e  p --Of) 

+ U=(P~-/3)+ U3(PF--~')+ U4P~+ YsPt3+ U~P~ 

The equations of motion are 

p = 6 ~ r / 6 e p  = U~ 

s = ~ G / a P ~  = G 

F = ~ Y G / S P ~  = G 

o~ = Po = - 3 Y g T /  6p  = - ( i x  + V 2 / 2 )  

/3 = P s  = - - 6 Y ~ T /  6 S  = --(  T +  V ."  V/3) 

v= ~ = - 6 ~ T / a F = - ~ ' V ~  

Theevolut ionof~, /3 ,  G ~ , ~ , a n d  ~ i s g i v e n b y  

a = ~ ;  p+V'J=0 

/3= 4 ;  S+V.(S~)=0 

u= ~ ;  F + V . ( F ~ ) = 0  
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(4.7) 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

From our previous equations, we obtain the constraint equations 
imposed at the Lagrangian level plus the time evolution for a, /3, and v. 
Equation (4.11) implies that the superfluid is a potential flow (Landau and 
Lifshitz, 1987). 

To determine the secondary constraints, we must use the noncontra- 
diction equation (Rodriguez-Nfifiez, 1977) 

{f(kl)(x), ~ r } + ~  f d3x' g i (x ' ){ f (k l ) (x) ' f } l ) (X ' )} -~0 (4.17) 

Before evaluating equation (4.17), we write down the Poisson brackets 
of the primary constraints. They are 

{f]'),f(41)}-={f(21),f~l)}-={f(31),f(61)}_=6(3)(X-X ') (4.18) 

and zero for the other terms. 
When we apply equation (4.17) to our primary constraints, we do not 

obtain new constraint equations. So, secondary constraints are missing in 
this particular example. Also, our constraints are of second class according 
to the Dirac notation. The last result implies that 

{F, G}_ # {F, G}*_ (4.19) 
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i.e., the Dirac bracket is different from the Poisson bracket. This is a big 
difference from the results given in Rodrfguez-G6mez (1980). 

It is an easy matter to show that 

{p (x), a (x')}* = 6(3)(x - x') (4.20) 

{p(x), p(  x ' )  Vsj( x ' )  } *- = - p  ( x')O~j6(3)( x - x ' )  (4.21) 

{io,(x), p / x ' ) } *  = (S (x )Ox j /3 (x ' )  + F ( x ) o x j ~ ( x ' ) ) o x , ~ ( x  - x ' )  

- (S (x ' )ox , /3 (x )  + F ( x ' ) o x y ( x ) )  

• Oxj6(3)(x - x ' )  (4.22) 

{S(x),/3 (x')}* = 6(3)(x - x ' )  (4.23) 

{F(x) ,  ~,(x')}* = 8(3)(x - x') (4.24) 

In passing, let us recall that the Theorem given by equation (2.7) 
applies to our system, since our constraints are second class. So, all variables 
are physical. 

5. CONCLUSIONS 

For the first time, we have been able to show a consistent way to handle 
the superfluid constraints in phase space. We have obtained the Dirac 
brackets for all canonical variables and they satisfy the appropriate commu- 
tation rules of  a field theory, as they should. 

Also, from a classical point of view, we have calculated the Dirac 
brackets {p, J}* and {Pi, P~}*. The expressions we obtain are the correct 
results for a classical field theory. It is worthwhile to mention that Dzyalosh- 
inskii and Volovik (1980) postulated the classical Poisson brackets of  the 
same field quantities. However, their results have the shortcoming of  being 
derived from quantum mechanics in the classical limit. We should recall 
Dirac when he says that we have to be very careful when going either from 
classical to quantum theory or the other way around. 

Another conclusion we have reached is that all our field variables are 
physical, i.e., they are needed to describe the helium superfluid properties. 
Of course, p = SVfl + FV v is a physical variable, since it is a combination 
of physical ones. As a consequence, the theorem of  Pokrovsky and Khalat- 
nikov (1976) retains its full validity in our formulation. 

In a simple fashion we can get the conservation equations (Rodrfguez- 
G6mez, 1980). Besides these features, we have allowed vorticity contribu- 
tions with V x p  • 0. These aspects are covered from a group theory point 
of view by Khalatnikov and Lebedev (1978). 
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